博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
机器学习经典算法具体解释及Python实现--K近邻(KNN)算法
阅读量:6832 次
发布时间:2019-06-26

本文共 8209 字,大约阅读时间需要 27 分钟。

(一)KNN依旧是一种监督学习算法

KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单。最好理解的。KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离近期的邻居进行分类推断(投票法)或者回归。假设K=1。那么新数据被简单分配给其近邻的类。KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定义。对于监督学习。数据都有明白的label(分类针对离散分布,回归针对连续分布),依据机器学习产生的模型能够将新数据分到一个明白的类或得到一个预測值。对于非监督学习,数据没有label。机器学习出的模型是从数据中提取出来的pattern(提取决定性特征或者聚类等)。比如聚类是机器依据学习得到的模型来推断新数据“更像”哪些原数据集合。KNN算法用于分类时,每一个训练数据都有明白的label。也能够明白的推断出新数据的label,KNN用于回归时也会依据邻居的值预測出一个明白的值,因此KNN属于监督学习。

KNN算法的过程为:

  1. 选择一种距离计算方式, 通过数据全部的特征计算新数据与已知类别数据集中的数据点的距离
  1. 依照距离递增次序进行排序。选取与当前距离最小的k个点
  1. 对于离散分类,返回k个点出现频率最多的类别作预測分类;对于回归则返回k个点的加权值作为预測值

(二)KNN算法关键

KNN算法的理论和过程就是那么简单,为了使其获得更好的学习效果,有以下几个须要注意的地方。
1、数据的全部特征都要做可比較的量化。

若是数据特征中存在非数值的类型,必须採取手段将其量化为数值。

举个样例。若样本特征中包括颜色(红黑蓝)一项,颜色之间是没有距离可言的,可通过将颜色转换为灰度值来实现距离计算。

另外,样本有多个參数,每个參数都有自己的定义域和取值范围,他们对distance计算的影响也就不一样。如取值较大的影响力会盖过取值较小的參数。为了公平,样本參数必须做一些scale处理,最简单的方式就是全部特征的数值都採取归一化处置。

2、须要一个distance函数以计算两个样本之间的距离。
距离的定义有非常多。如欧氏距离、余弦距离、汉明距离、曼哈顿距离等等,关于相似性度量的方法可參考‘’。普通情况下,选欧氏距离作为距离度量,可是这是仅仅适用于连续变量。

在文本分类这样的非连续变量情况下,汉明距离能够用来作为度量。通常情况下。假设运用一些特殊的算法来计算度量的话,K近邻分类精度可显著提高,如运用大边缘近期邻法或者近邻成分分析法。

3,确定K的值
K是一个自己定义的常数,K的值也直接影响最后的预计,一种选择K值得方法是使用 cross-validate(交叉验证)误差统计选择法交叉验证的概念之前提过,就是数据样本的一部分作为训练样本,一部分作为測试样本。比方选择95%作为训练样本,剩下的用作測试样本。

通过训练数据训练一个机器学习模型,然后利用測试数据測试其误差率。 cross-validate(交叉验证)误差统计选择法就是比較不同K值时的交叉验证平均误差率。选择误差率最小的那个K值。

比如选择K=1,2,3,... ,   对每一个K=i做100次交叉验证。计算出平均误差。然后比較、选出最小的那个

(三)KNN分类

训练样本是多维特征空间向量,当中每一个训练样本带有一个类别标签(喜欢或者不喜欢、保留或者删除)。分类算法常採用“多数表决”决定,即k个邻居中出现次数最多的那个类作为预測类。“多数表决”分类的一个缺点是出现频率较多的样本将会主导測试点的预測结果。那是由于他们比較大可能出如今測试点的K邻域而測试点的属性又是通过K领域内的样本计算出来的。解决这个缺点的方法之中的一个是在进行分类时将K个邻居到測试点的距离考虑进去。比如,若样本到測试点距离为d,则选1/d为该邻居的权重(也就是得到了该邻居所属类的权重),接下来统计统计k个邻居全部类标签的权重和,值最大的那个就是新数据点的预測类标签。
举例,K=5,计算出新数据点到近期的五个邻居的举例是(1,3,3,4,5),五个邻居的类标签是(yes,no,no。yes,no)
若是依照多数表决法,则新数据点类别为no(3个no,2个yes);若考虑距离权重类别则为yes(no:2/3+1/5,yes:1+1/4)。

以下的Python程序是採用KNN算法的实例(计算欧氏距离。多数表决法决断):一个是採用KNN算法改进约会站点配对效果。还有一个是採用KNN算法进行手写识别。

约会站点配对效果改进的样例是依据男子的每年的飞行里程、视频游戏时间比和每周冰激凌耗量三个特征来推断其是否是海伦姑娘喜欢的类型(类别为非常喜欢、一般和讨厌),决策採用多数表决法。

因为三个特征的取值范围不同,这里採用的scale策略为归一化。

使用KNN分类器的手写识别系统 仅仅能识别数字0到9。

须要识别的数字使用图形处理软件,处理成具有同样的色 彩和大小 :宽髙是32像素X32像素的黑白图像。虽然採用文本格式存储图像不能有效地利用内存空间,为了方便理解,这里已经将将图像转换为文本格式。训练数据中每一个数字大概有200个样本。程序中将图像样本格式化处理为向量,即一个把一个32x32的二进制图像矩阵转换为一个1x1024的向量。

from numpy import *import operatorfrom os import listdirimport matplotlibimport matplotlib.pyplot as pltimport pdbdef classify0(inX, dataSet, labels, k=3):    #pdb.set_trace()    dataSetSize = dataSet.shape[0]    diffMat = tile(inX, (dataSetSize,1)) - dataSet    sqDiffMat = diffMat**2    sqDistances = sqDiffMat.sum(axis=1)    distances = sqDistances**0.5    sortedDistIndicies = distances.argsort() #ascend sorted,    #return the index of unsorted, that is to choose the least 3 item        classCount={}              for i in range(k):        voteIlabel = labels[sortedDistIndicies[i]]        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1# a dict with label as key and occurrence number as value    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)    '''descend sorted according to value, '''    return sortedClassCount[0][0]def file2matrix(filename):    fr = open(filename)    #pdb.set_trace()    L = fr.readlines()    numberOfLines = len(L)         #get the number of lines in the file    returnMat = zeros((numberOfLines,3))        #prepare matrix to return    classLabelVector = []                       #prepare labels return           index = 0    for line in L:        line = line.strip()        listFromLine = line.split('\t')        returnMat[index,:] = listFromLine[0:3]        classLabelVector.append(int(listFromLine[-1]))        #classLabelVector.append((listFromLine[-1]))        index += 1    fr.close()    return returnMat,classLabelVectordef plotscattter():    datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')       #load data setfrom file    fig = plt.figure()    ax1 = fig.add_subplot(111)    ax2 = fig.add_subplot(111)    ax3 = fig.add_subplot(111)    ax1.scatter(datingDataMat[:,0],datingDataMat[:,1],15.0*array(datingLabels),15.0*array(datingLabels))    #ax2.scatter(datingDataMat[:,0],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))    #ax2.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))    plt.show()        def autoNorm(dataSet):    minVals = dataSet.min(0)    maxVals = dataSet.max(0)    ranges = maxVals - minVals    normDataSet = zeros(shape(dataSet))    m = dataSet.shape[0]    normDataSet = dataSet - tile(minVals, (m,1))    normDataSet = normDataSet/tile(ranges, (m,1))   #element wise divide    return normDataSet, ranges, minVals   def datingClassTest(hoRatio = 0.20):    #hold out 10%    datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')       #load data setfrom file    normMat, ranges, minVals = autoNorm(datingDataMat)    m = normMat.shape[0]    numTestVecs = int(m*hoRatio)    errorCount = 0.0    for i in range(numTestVecs):        classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])        if (classifierResult != datingLabels[i]): errorCount += 1.0    print "the total error rate is: %.2f%%" % (100*errorCount/float(numTestVecs))    print 'testcount is %s, errorCount is %s' %(numTestVecs,errorCount)def classifyPerson():    '''    input a person , decide like or not, then update the DB    '''    resultlist = ['not at all','little doses','large doses']    percentTats = float(raw_input('input the person\' percentage of time playing video games:'))    ffMiles = float(raw_input('flier miles in a year:'))    iceCream = float(raw_input('amount of iceCream consumed per year:'))    datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')    normMat, ranges, minVals = autoNorm(datingDataMat)    normPerson = (array([ffMiles,percentTats,iceCream])-minVals)/ranges    result = classify0(normPerson, normMat, datingLabels, 3)    print 'you will probably like this guy in:', resultlist[result -1]    #update the datingTestSet    print 'update dating DB'    tmp = '\t'.join([repr(ffMiles),repr(percentTats),repr(iceCream),repr(result)])+'\n'    with open('datingTestSet2.txt','a') as fr:        fr.write(tmp)def img2file(filename):    #vector = zeros(1,1024)    with open(filename) as fr:        L=fr.readlines()    vector =[int(L[i][j]) for i in range(32) for j in range(32)]    return array(vector,dtype = float)        def handwritingClassTest():    hwLabels = []    trainingFileList = listdir('trainingDigits')           #load the training set    m = len(trainingFileList)    trainingMat = zeros((m,1024))    for i in range(m):        fileNameStr = trainingFileList[i]        fileStr = fileNameStr.split('.')[0]     #take off .txt        classNumStr = int(fileStr.split('_')[0])        hwLabels.append(classNumStr)        trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)    testFileList = listdir('testDigits')        #iterate through the test set    errorCount = 0.0    mTest = len(testFileList)    for i in range(mTest):        fileNameStr = testFileList[i]        fileStr = fileNameStr.split('.')[0]     #take off .txt        classNumStr = int(fileStr.split('_')[0])        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)        if (classifierResult != classNumStr): errorCount += 1.0    print "\nthe total number of errors is: %d" % errorCount    print "\nthe total error rate is: %f" % (errorCount/float(mTest))if __name__ == '__main__':    datingClassTest()    #handwritingClassTest()

KNN算法学习包下载地址为:

(四)KNN回归

数据点的类别标签是连续值时应用KNN算法就是回归。与KNN分类算法过程同样。差别在于对K个邻居的处理上。KNN回归是取K个邻居类标签值得加权作为新数据点的预測值。加权方法有:K个近邻的属性值的平均值(最差)、1/d为权重(有效的衡量邻居的权重。使较近邻居的权重比較远邻居的权重大)、高斯函数(或者其它适当的减函数)计算权重= gaussian(distance) (距离越远得到的值就越小,加权得到更为准确的预计。

(五)总结

K-近邻算法是分类数据最简单最有效的算法,其学习基于实例,使用算法时我们必须有接近实际数据的训练样本数据。K-近邻算法必须保存所有数据集,假设训练数据集的非常大,必须使用大量的存储空间。此外,因为必须对数据集中的每一个数据计算距离值,实际使用时可能非常耗时。

k-近邻算法的还有一个缺陷是它无法给出不论什么数据的基础结构信息,因此我们也无法知晓平均实例样本和典型实例样本具有什么特征。

本文作者,来源于:。转载请注明出处。

你可能感兴趣的文章
SpannableString的一个奇怪的问题
查看>>
乐高情报站7月份抽奖数据汇总。
查看>>
Algorithm Part I:Priority Queues
查看>>
但从谈论性能点SQL Server选择聚集索引键
查看>>
uboot初体验-----趣谈nand设备发起的浅显理解
查看>>
基于selenium的pyse自动化测试框架
查看>>
编译的依赖不能vs的release工程
查看>>
Linux常用的系统监控shell脚本
查看>>
codeforces Gym 100500C D.Hall of Fame 排序
查看>>
约瑟夫环问题
查看>>
yum
查看>>
c++指针存储应用程序和释放内存的问题
查看>>
LPC43xx SGPIO Slice 示意图
查看>>
NUMA的取舍与优化设置
查看>>
uboot源码整体框架
查看>>
编译命令行终端 swift
查看>>
Swift - 使用UISearchController实现带搜索栏的表格
查看>>
web接口测试之GET与POST请求
查看>>
关于LR中的EXTRARES
查看>>
转:如何转换Android打包用jks格式keystore证书为Air用pkcs12格式p12证书
查看>>